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Abstract Distance sampling and capture–recapture are the two most widely used
wildlife abundance estimationmethods. capture–recapturemethods have only recently
incorporated models for spatial distribution and there is an increasing tendency for
distance sampling methods to incorporated spatial models rather than to rely on partly
design-based spatial inference. In this overview we show how spatial models are cen-
tral to modern distance sampling and that spatial capture–recapture models arise as an
extension of distance sampling methods. Depending on the type of data recorded, they
can be viewed as particular kinds of hierarchical binary regression, Poisson regres-
sion, survival or time-to-event models, with individuals’ locations as latent variables
and a spatial model as the latent variable distribution. Incorporation of spatial mod-
els in these two methods provides new opportunities for drawing explicitly spatial
inferences. Areas of likely future development include more sophisticated spatial and
spatio-temporal modelling of individuals’ locations and movements, new methods for
integrating spatial capture–recapture and other kinds of ecological survey data, and
methods for dealing with the recapture uncertainty that often arise when “capture”
consists of detection by a remote device like a camera trap or microphone.
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1 Introduction

The need to account for imperfect detection in wildlife surveys has long been rec-
ognized. The best way to do this, and the effects of not accounting for it, are often
discussed in the ecological literature (Kellner and Swihart 2014). Distance sampling
(DS) and capture–recapture (CR) methods are the most commonly used methods of
estimating abundance (see Buckland et al. 2001; Williams et al. 2002 for overviews
of DS and CR, respectively).

The two main types of distance sampling are line transect (in which observers tra-
verse lines while searching, and the line is the “sampler”) and point transect (in which
observers search from a point, and the point is the “sampler”). As their name suggests,
DS methods use distances to detected individuals to draw inferences about detection
probability. If the distribution of individuals in the vicinity of samplers (i.e., close to
the lines or points) is known, changes in detection frequency as a function of distance
from sampler can be used to estimate the relative detectability of individuals as a
function of distance. And if all individuals at distance zero are detected, estimates of
relative detectability can be converted into estimates of absolute detection probability.
This is what DS methods do. Because detection probability is modelled as a func-
tion of distance, individuals’ inclusion probabilities (the probability of an individual
appearing in the sample) can be estimated as a function of their locations.

By contrast, capture–recapture methods took no account of the location of indi-
viduals before the advent of spatial capture–recapture. Classical CR methods were
classified by Otis et al. (1978) according to the form of dependence of capture proba-
bility on explanatory variables: M0 for none,Mt for occasion (time),Mb for individual
trap-response (behaviour avoidance or attraction after being captured) andMh for indi-
vidual heterogeneity. None of these models include anything to do with individuals’
locations. As a result classical CR methods can not draw inferences about detection
probability as a function of location, and so, unlike distance sampling methods, are
not able to draw inferences about detection (or capture) range. And a consequence of
this is that they are not able to draw inferences about density, only about abundance
in some unknown region. The region is unknown because CR data contain no spatial
information and so no information on how far away individuals are detectable. A vari-
ety of methods using data external to the CR survey and/or additional assumptions
about detection range have been used to try to get density estimates out of non-spatial
CR data, but these do not in general perform well (see Efford and Fewster 2013).

Spatial capture–recapture (SCR) methods rectified this situation by incorporating
distance sampling detection functions in CR methods. Actually, that is not quite true,
distance sampling detection functions had been used with CR survey methods for at
least two decades prior to the advent of SCR, in the form of “mark-recapture dis-
tance sampling” (MRDS) methods (see Borchers et al. 1998, and references therein).
What SCR added to MRDS was the ability to deal with unobserved individual loca-
tions.

Both DS and CR methods involve spatial sampling, i.e. placing samplers randomly
or systematically in space and detecting individuals in a population on the basis of their
proximity to the samplers. And yet conventional DS and CR models base inference
either on very simplistic spatial models (independent, uniform distribution in space,
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typically) or conduct inference without an explicit spatial model. With the advent of
SCRmodels, this situation is rapidly changing in the case of CR, and there is a parallel
tendency for DS models to incorporate an explicit model for the spatial distribution
of animals in the region of interest. That said, the kinds of spatial models used in
DS and SCR tend to be very simple compared to those used in the field of spatial
modelling itself. In particular, they tend to neglect spatial correlation—something that
is so central to the field of spatial modelling that many in that field would say that the
model is not a spatial model unless it incorporates spatial correlation.

Spatial modelling in a DS and SCR context presents new challenges because the
probability of including individuals in the sample depends on their location relative
to the samplers and this probability is unknown and must be estimated from the
same data used to estimate the parameters of the spatial model. As a result, spatial
modelling in DS, and SCR in particular, is in its infancy and there is much scope
for methodological development. Development of realistically complex spatial and
spatio-temporal models for use with DS and SCR could provide new ways of address-
ing questions of a fundamentally spatial nature, such as species distribution, habitat
preference, movement patterns, spatial connectivity and spatial aspects of population
dynamics.

We do not develop such models here, but by formulating DS and SCR models as
thinned point process models with unknown thinning probabilities in this paper, we
provide a framework that unites the two methods and can serve as a basis for the
development of realistically complex spatial models for these two most widely used
methods in ecological sampling.

The remainder of this review is organized as follows:Webuild on a description of the
modeling framework (Sect. 2) with sections placing conventional distance sampling
(Sect. 3) and mark-recapture distance sampling (Sect. 4) within that framework. We
then move to spatial capture recapture models (Sect. 5) and some of their extensions
(Sect. 6). We conclude in Sect. 7 with a brief discussion noting relevant topics that we
neglected for the sake of brevity and the key areas that we anticipate will be the focus
of future research effort.

2 Modelling framework

We use the terms capture or detection interchangeably, depending on context. Unless
we say otherwise, we assume that animals are, or can be, uniquely marked, and that
they are identified as marked when recaptured. Any feature that uniquely identifies an
animal, allowing previous captured animals to be recognized, can be used to “mark” the
animal. Examples of such “natural” marks include DNA fingerprinting (Puechmaille
and Petit 2007), dorsal fin contours (Currey et al. 2008), fur patterns (Rich et al.
2014) or distinctive scars or other marks. We use “traps” and “detectors” somewhat
interchangeably, preferring “detectors” to convey the idea that animals do not need to
be physically trapped.

To avoid more complicated notation than is essential, we do not distinguish in
our notation between random variables and realisations of random variables. This is
usually apparent from the context.
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2.1 The meaning of “location”

Wedenote the location of individual i in a population of interest by si , and the locations
of all individuals in the population by S = (s1, . . . , sN ).

The meaning of “location” is survey dependent. “Location” may be an abstract
thing and need not have any biological relevance. On a distance sampling survey in
which animals are detected by eye, “location” is the point in the plane that the animal
is at when it is first detected. For a tiger that is detected by moving in front of a
camera trap, “location” for the purposes of SCR is the centre of its movements over
the duration of the survey (its “activity centre”), not its location at time of detection.
In this case detection comes about as a consequence of the tiger’s movement. For
a frog sitting still and making sounds that are detected by microphones, “location”
is the position of the frog. In this case detection comes about as a consequence of
the frog’s vocalization, not its movement. For a bird moving about and making calls
that are detected by microphones, “location” is its activity centre over the period that
microphones operated. In this case detection comes about as a consequence of both
the bird’s movement and its vocalization. We use the words “location” and “activity
centre” interchangeably.

2.2 The model hierarchy

Distance sampling and spatial capture–recapture models are hierarchical. The low-
est level of the hierarchy is a point process model for the locations of individuals
in the population. On top of this is a detection probability model for individuals
that is conditional on the individuals’ locations. Because CR surveys involve repeat
detections, the basic observation for the i th individual on a CR survey is a “cap-
ture history”, ωi = (ωi1, . . . , ωi J ), being a vector of J binary random variables
for a survey with J occasions, in which ωi j = 1 if individual i was detected
on occasion j and ωi j = 0 otherwise. And since SCR surveys involve multi-
ple detectors per occasion, SCR capture histories are slightly more complex, being
ωi = (ωi11, . . . , ωi J1, . . . , ωi1K , . . . , ωi J K ) for a survey with K detectors on each
occasion. We denote the full set of capture histories Ω = (ω1, . . . ,ωN ).

The basic SCR hierarchy is therefore

fS(S;φ) This is a point process model for the number (N ) and locations S of
the N individuals in the population. Here φ is a vector of (typically
unknown) parameters of this model.

fΩ(Ω|S; θ) This is a probabilitymodel for the capture histories, given individuals’
locations, S. Here θ is a vector of (typically unknown) parameters of
the spatial detection probability model.

2.3 The point process model

While other point process models are possible, with very few exceptions, the point
process model governing the number and locations of individuals is assumed to be a
Poisson process model:
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fS(S;φ) = eE(N ;φ)
N∏

i=1

D(si ;φ) (1)

where D(s;φ) is the density of individuals at location s and E(N ;φ) = ∫
A D(s;φ)ds,

with integration being over the survey region A.
It is not uncommon for DS and SCR models to condition on N , i.e. to treat the

number of individuals in the survey region as a fixed (but unknown) number, not a
random variable, in a frequentist context. In this case the locations of the N individuals
in the population follows a non-homogeneous binomial point process: fS(SN ;φ) =
D(si ;φ)/

∫
A D(s;φ)ds, where the N subscript on SN indicates that N is fixed in this

case (whereas with S, N is a random variable). In this review we use the Poisson point
process model rather than the binomial point process model. We can factorise Eq. (1)
as the product of a Poisson distribution for N (the first term in square brackets below)
and a binomial point process model for S, given N (the second term in square brackets
below):

fS(S;φ) =
[
E(N ;φ)NeE(N ;φ)

N !

] [
N !

N∏

i=1

D(si ;φ)

E(N ;φ)

]
. (2)

2.4 The observation model

It is convenient to separate the observation process into the probability of observing an
individual at all, and the probability of obtaining a capture history, given observation
or not. We define a random vector Δ = (δ1, . . . , δN ) such that δi = 1 if individual i
was observed at all on the survey, and δi = 0 otherwise (i = 1, . . . , N ). In the case
of unobserved individuals there is only one possible capture history, comprising K J
zeros, so there is no random process operating for capture histories of unobserved indi-
viduals. In the case of observed individuals, we do have a random process operating.
We use Ωn to denote the capture histories of detected individuals.

It is useful to construct a hierarchy of random processes within the observation
process, thus:

fΔ(Δ|S; θ) This is the detection probability model, conditional on S, in which
the δi s are typically assumed to be independent so that fΔ(Δ|S; θ) =∏

i fδ(δi |si ; θ), and fδ(δi |si ; θ) is a binary regression model with param-
eter vector θ and explanatory variable s. (Typically there would also be
other explanatory variables, but we omit these for simplicity.)

fΩn (Ωn|Δ, S; θ) This is a probability model for the capture histories of detected
individuals, given detection or not (Δ) and locations S.

The above observation models depend on the locations of the detectors as well as the
locations of the individuals in the population of interest. Both models are therefore
conditional on the locations of detectors, but for simplicity of exposition we do not
make these locations explicit at this stage.
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3 Conventional distance sampling models

Let dik = dik(si ) be the distance of individual i , located at si , from detector k,
and let p(d) be the probability that an individual at distance d from detector k is
detected. Conventional distance sampling (CDS) models assume that p(0) = 1. (The
CDS literature usually refers to this probability as g(0), not p(0). We use p(0) for
consistency with CR literature.) A common form for p(d) is the half-normal:

p(d; θ) = exp

{−d2

2σ 2

}
(3)

where θ ≡ σ 2. Another common form is the hazard rate form of Hayes and Buckland
(1983). Additional flexibility can be obtained by adding “adjustment terms”, which
involves adding scaled cosine or polynomial basis functions to the half-normal, hazard-
rate or uniform p(d) model (see Buckland 1992).

CDS surveys typically involve only one distance per detected individual (d(si ) for
individual i), so that

fΔ(Δ|S; θ) =
N∏

i=1

fδ(δi |si ; θ)

=
N∏

i=1

p(d(si ); θ)δi [1 − p(d(si ); θ)]1−δi . (4)

3.1 Distance sampling as a latent variable regression model

The above looks like a binary regression model, with explanatory variable d(si ) and a
non-standard form for the binary “success” probability p(d(si ); θ) (namely one that
has p(0; θ) = 1). Unfortunately, it can not be implemented as such—because we do
not observe the “failures” (when δi = 0) and as a consequence we do not know how
many binary “trials” there were.

The way DS methods deal with this is by treating the number of trials (N here) as a
latent variable, or unknown parameter. More specifically, the spatial nonhomogeneous
Poisson process (NHPP) of the previous section provides a probability mass function
for the latent variable N , namely N ∼ Po(E(N ;φ)), as per the first term in square
brackets in Eq. (2), and for S given N , as per the second term in square brackets in
Eq. (2). So one can think of distance sampling models as binary regression models
with a random number of trials, governed by a probability density for N , and partially
observed latent variables S (observed only for detected individuals).

If N is treated as a fixed but unknown parameter, and S as a draw from a binomial
point process model, then the distance sampling model can be thought of as a binary
regression model with an unknown number of trials (N ) and partially observed latent
variables S. The focus of inference in this case is on the number of trials, N . Inference
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about N is only possible because the value of p(dk(si ); θ) is known for some d(s),
namely p(0; θ) = 1 (see below too).

3.2 Distance sampling as a thinned point process

Although most distance sampling methods are not fully model-based (i.e based on a
model of the sort outlined above), there is an increasing trend towards fully model-
based inference (see Buckland et al. 2016) and that is what we focus on here. Johnson
et al. (2010) is a recent example of this approach. Like Johnson et al. (2010), we
assume that [S;φ] is a nonhomogeneous Poisson process (NHPP), as in Eq. (1). As a
consequence, the locations Sn of the n observed individuals (those with δi = 1) is a
thinned NHPP, thinned according to Eq. (4), i.e.

fSn (Sn; θ , φ) = eE(n;θ ,φ)
n∏

i=1

p (d(si ); θ) D(si ;φ) (5)

with E(n; θ), φ = ∫
A p(d(s); θ)D(s;φ)ds. Note that on DS surveys, Sn is observed.

This kind of thinning is called “p(x)-thinning” by Illian et al. (2009), because the
thinning depends on some covariate x (d(s) in our case). A notable feature of thinning
in a distance sampling context is that the thinning function p(d(s); θ) is unknown.

When considered as a function of θ and φ, given the observations Sn obtained on
a survey, Eq. (5) is a distance sampling likelihood function.

Notice that multiplying p(d(s); θ) by any constant and dividing D(s;φ) by this
constant gives the same likelihood. As a consequence, p(d(s); θ) and D(s;φ) cannot
be separately estimated fromdistance sampling data.Distance samplingmethods avoid
this problem by assuming that p(0; θ) = 1 (as in Eq. (3), example) and modelling
D(s;φ) as a smooth function of function of spatial covariates. Providing that samplers
span a range of these covariate values, separate estimation of and D(s;φ) is possible ,
although confounding of the two functions is still possible. Confounding will manifest
itself in analysis as a ridge in the likelihood. In conventional distance sampling, (s;φ)

is assumed constant and in this case there is no confounding.
We can rewrite Eq. (5) as

fSn (Sn; θ , φ) =
(
E(n; θ , φ)neE(n;θ ,φ)

n!

) (
n!

n∏

i=1

p(d(si ); θ)D(si ;φ)

E(n; θ , φ)

)

= f (n)n!
n∏

i=1

f (si |δi = 1) ∝ f (n)

n∏

i=1

f (si |, δi = 1) (6)

where f (n) is a Poisson distribution and f (si |δi = 1) is the conditional distribution
of the observed location si , given that individual i was detected. This is the form in
which CDS likelihoods appear in the DS literature (see Appendix), although more
commonly with binomial rather than Poisson f (n) (see Buckland et al. 2016).
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3.3 Distance sampling hybrid model

Most CDS estimators are not fully model-based, in that they do not involve a spatial
point process model for the whole survey region. They typically assume uniform
distribution in the vicinity of the samplers, i.e. within some specified distanceW such
that p(W ; θ) > 0 (typically 0.1 ≤ p(W ; θ) ≤ 0.15) and then use design-based
inference to estimate density and abundance in the whole survey region, conditional
on estimates within distance W of samplers. Buckland et al. (2004) refer to this as a
“hybrid” model; see Buckland et al. (2001, 2004) for details.

4 Mark-recapture distance sampling

Mark-recapture distance sampling (MRDS) is distance sampling with more than one
detector, with detectors acting independently. The logistic constraints imposed by
having more than one detector at the same location (which usually means on the
same survey boat, plane or other survey platform) are such that no more than two
detectors are used (i.e., K = 2) although in principle more could be used. “Recap-
tures” are detections of the same individual by both detectors. (They are usually called
“duplicates” in the context of MRDS surveys.) Viewed from a CR perspective, MRDS
surveys are two-occasion surveys, with detectors playing the role of occasion, indi-
viduals’ locations are individual random effects that affect capture probability, and
D(s;φ)/

∫
A D(s;φ)ds is the random effect distribution. The random effect is par-

tially observed, insofar as individuals’ locations are observed for detected individuals
but not undetected individuals. (This is also true for CDS models.)

MRDS surveys generate capture history data Ωn (ωi ∈ {(1, 0), (0, 1), (1, 1)} with
K = 2 detectors; i = 1, . . . , n). We assume that individuals are detected indepen-
dently and we write the probability of observing capture history ωi as P(ωi ; θ). A
MRDS likelihood function is obtained by multiplying the CDS likelihood Eq. (5) by
a capture–recapture probability component:

fΩn (Ωn|Δ, S; θ) =
n∏

i=1

P(ωi |si , δi = 1; θ)

=
n∏

i=1

P(ωi |si ; θ)

p(d(si ); θ)
. (7)

TheMRDS likelihood is then as follows (for readability we usually omit the parameter
vectors φ and θ from the equations from now on):

fSn ,Ωn (Sn,Ωn) = eE(n;θ)
n∏

i=1

p(d(si ))D(si )P(ωi |si , δi = 1)

= eE(n;θ)
n∏

i=1

D(si )P(ωi |si ) (8)
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If we also assume (as is commonly done) that detection of an individual by one
observer is independent of its detection by another, and we let pk(d(si )) be the prob-
ability that observer k (k = 1, 2) detects individual i , then the probability of detecting
individual i at all is p(d(si )) = 1 − ∏2

k=1 [1 − pk(d(si ))] and the capture history
probability is

P(ωi |si ) =
2∏

k=1

pk(d(si ))ωik [1 − pk (d(si ))]1−ωik (9)

In this case, Eq. (7) is the conditional capture–recapture model of Alho (1990) and
Huggins (1989), with d(s) as an explanatory variable. UnlikeCDSdetection functions,
MRDS and CR models typically use standard binary regression model forms for
pk(d(s)) (most often logistic) and do not assume that pk(0) = 1. Unlike CDSmodels,
this does not result in confounding between D(si ) (or N ) and pk(d(s)), because
pk(d(s)) is estimable from the conditional capture history likelihood Eq. (7) alone, as
demonstrated by Alho (1990) and Huggins (1989).

By similar arguments to those used to show that CDS models are latent variable
binary regression models, MRDSmodels are latent variable binary regression models,
but with each subject having K = 2 regressions with the same explanatory variable
(si for subject i).

5 Spatial capture–recapture methods

SCR surveys typically involve K > 2 detectors placed at different locations (unlike
MRDS surveys which usually have K = 2 detectors at the same location, although
the location can move over time). This might, for example, be an array of camera traps
(which photograph animals as they pass), an array of microphones or hydrophones,
or an array of traps of some sort. It is assumed that individuals can be recognised (by
natural markings, acoustic signature, DNA, attached tag, or some other means) so that
recaptures are identified as such. Like MRDS surveys, SCR surveys generate capture
histories of length K , indicating detection or not at each detector. Unlike MRDS
surveys, they most often also have capture histories through time at each detector.
The capture history for individual i is ωi = (ωi11, . . . , ωi1K , ωi21, . . . , ωi J K ), with
ωi jk = 1 if the individual was detected on occasion j (of J occasions) by detector k
(of K detectors), and ωi jk = 0 otherwise. Here j indexes discrete times (occasions).
SCRmodels that use continuous time have also been developed (Borchers et al. 2014).
We cover these briefly below, but begin by dealing with discrete occasions.

Having more detectors and more occasions than MRDS surveys, as SCR surveys
do, requires only very minor extension of the MRDS survey models described above.
When detections by each detector are independent, as withMRDS, Eq. (8) still applies,
but with the following equation replacing Eq. (9):

P(ωi |si ) =
J∏

j=1

K∏

k=1

p jk(d(si ))ωi jk
[
1 − p jk(d(si ))

]1−ωi jk , (10)
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where p jk(d(si )) is the probability of individual i being detected by detector k on
occasion j .

The feature that really distinguishes SCR models from MRDS models is that on
SCR surveys no locations of individuals are observed (remembering that when ani-
mals are detected wholly or partly because of their movement into the proximity of a
detector, “location” refers to their activity centre, not the location at which they were
detected): s1, . . . , sn are unknown. This makes inference a bit more difficult. From a
Bayesian perspective, it adds s1, . . . , sn to the vector of parameters to be estimated
(with D(s)/

∫
A D(s)ds being regarded as an independent prior for each of s1, . . . , sn ,

given n). From a frequentist perspective, it requires Sn to be integrated out of the
likelihood:

fΩn (Sn,Ωn) =
∫

A
. . .

∫

A
fSn ,Ωn (Sn,Ωn) ds1 . . . sn

= eE(n;θ)
n∏

i=1

∫

A
D(si )P(ωi |si )dsi (11)

The density function D(s) is typically quite smooth in space, so that fast and accurate
numerical integration is usually quite feasible.

5.1 SCR detection hazards and detection functions

Consider a point process in time in which the hazard of detection by detector k of
an individual at s at time t on occasion j is h jk(t, s), and the integrated hazard is

Hjk(s) = ∫ Tj
0 h jk(t, s)dt , where Tj is the length of occasion j . Assuming independent

detections over time, the mi jk times that individual i is detected at detector k on
occasion j (contained in the vector t i jk = (ti jk1, . . . , ti jkmi jk )) can be modelled as a
temporal Poisson process:

fti jk (t i jk |si ) = e−Hi jk (s)
mi jk∏

m=1

h jk(ti jkm, si )

=
[
Hjk(si )mi jk e−Hjk (si )

mi jk !

] [
mi jk

mi jk∏

m=1

!h jk(ti jkm, si )

Hjk(si )

]

= fm(mi jk |si ) ft |m(t i jk |mi jk, si ). (12)

from which it follows that the probability that individual i is detected at all by detector
k on the occasion is 1 − fm(0|si ), where 0 represents a zero capture history, i.e. the
capture history of an individual that is missed altogether, and for which mi jk = 0):

p jk(d(si )) = 1 − e−Hi jk (s). (13)
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If Hjk(si ) is modelled as a half-normal function of d(si ): Hjk(si ) = eθ0 jk−θd jkd(si )2

(with θd jk = 1/(2σ 2
jk)), then Eq. (13) has complimentary log–log form with linear

predictor θ0 jk − θd jkd(si )2.
The probability of detector k not detecting individual i on occasion j is the survival

function Si jk(s) = e−Hi jk (s).
Not all SCR detection functionmodels are formulated in terms of detection hazards,

but formulating them in this way does provide a versatile framework for dealing with
all kinds of SCR data, as we will see in the next section. And any detection function
can be reformulated in terms of integrated hazards. For example, the half-normal
detection function of Eq. (3) is quite commonly used in SCR models, albeit with an
intercept term, g0, that may be less than 1: p jk(d(si )) = g0 exp

{−d2/2σ 2
}
. If we

define a cumulative hazard as Hjk(si ) = − log(1−g0 exp
{−d2/2σ 2

}
), then Eq. (13)

is g0 exp
{−d2/2σ 2

}
.

5.2 SCR detection and capture models

Binary capture histories of the sort dealt with thus far are not the only possible kind of
capture histories that arise from SCR surveys. Some kinds of detector (camera traps
being an example) record not only whether or not an individual is detected on an
occasion, but also how many times it is detected. In this case, the response variable
is a count: the number of times individual i is detected on occasion j by detector k.
Some kinds of detector (camera traps again being a good example), record not only
the number of times that an individual is detected on each occasion but the times of
each detection. And when detectors are actual traps that detain individuals until the
surveyor releases them, the response is binary and the appropriate probability model
depends on whether or not traps are taken out of action when they catch an individual.
We consider each of these cases below:

Binary detection data This is the case in which the response is the binary ran-
dom variable ωi jk and detection does not involve catching the individual, so that
detections by different detectors within occasions are independent. P(ωi |si ) is as
in Eq. (10). Detection of individuals by hair snags (Efford et al. 2008 for exam-
ple) is an example of detectors that necessarily generate binary data. In this case,
individual identification is by DNA matching.
Binary capture data The response is again the binary random variable ωi jk but
because detection involves trapping and holding the individual, detections by dif-
ferent detectors within occasions are not independent: when an individual is caught
in one trap on any occasion, it cannot be caught in any other trap within that occa-
sion.Weneed to distinguish further between “single-catch” traps and “multi-catch”
traps. The former are taken out of action as soon as an individual is caught (snap
traps are an example) (see Efford et al. 2008), the latter have nominally infinite
capacity (mist nets are an example, see Borchers and Efford 2008).

In the case of multi-catch traps, we canmodel the detection process as a competing
risks survival model, where “death” corresponds to capture, and traps “compete”
to catch individuals. In this case

123



486 D. L. Borchers, T. A. Marques

P(ωi |si ) =
J∏

j=1

S j (si )1−
∑

k ωi jk

K∏

k=1

[
Hjk(si )

Hj ·(si )
p j (d(si ))

]ωi jk

, (14)

where Hjk(si ) is the integrated hazard of detection (see Sect. 5.1) and Hj ·(si ) =∑K
k=1 Hjk(si ). (Note that only one of ωi j1, . . . , ωi j K can be non-zero because an

individual can only be caught in one trap on any one occasion.)

Unlike SCR models with binary detection data or MRDS models, the SCR model
for multi-catch trap data can not be viewed as a binary regressionmodel with latent
variables, because Eq. (14) is not a binary regression model. It could be viewed as
a survival model with latent variables Sn , an unknown number of right-censored
subjects (the undetected individuals) and unknown times of death (capture times).
And if the integrated hazard is modelled using a half-normal shape, as in Eq. (13),
it is a survival model with complimentary log–log link function.

In the case of single-catch traps, traps “compete” to catch individuals and as soon as
a trap does catch an individual, it is taken out of action. A computationally tractable
expression for the probability of the observations from single-catch traps remains
to be developed. Efford (2004) developed a simulation-based inverse prediction
method that is currently the only method that is able to deal explicitly with this
case. Multi-catch estimation methods have been shown to performwell when used
with single-catch traps, providing that trap saturation (the proportion of traps taken
out of action by catching individuals) is not very high (see Efford et al. 2008).
Count detection data This is the case in which the response variable is a count:
mi jk ∈ {0, 1, . . . ,∞} is the number of times individual i was detected on occa-
sion j by detector k. Detection does not involve catching the individual, so that
detections by different detectors within occasions are independent (given s). The
Poisson distribution, fm(mi jk) of Eq. (12) was proposed by Royle et al. (2009)
for modelling mi jk , and it is to date the only model that has been used, although
overdispersed count models have been suggested. With this model, P(ωi |si ) in
Eq. (11) is replaced by

P(mi |si ) =
J∏

j=1

K∏

k=1

Hi jk(s)mi jk e−Hi jk (s)

mi jk ! , (15)

where mi = (mi11, . . . ,mi1K ,mi21, . . . ,mi J K ). This is a Poisson regression
model in which the number of subjects (n) is itself a Poisson random variable
and subjects have latent random variables Sn that are governed by the spatial
NHPP.
Time of detection data SCR models with detection time as response were
proposed by Borchers et al. (2014). In this case, the response is a vector of
detection times t i = (t i11, . . . , t i1K , t i21, . . . , t i J K ) for individual i , where
t i jk = (ti jk1, . . . , ti jkmi jk ). In this case, P(ωi |si ) of Eq. (11) is replaced by

123



Special issue: ecological statistics. From distance sampling… 487

fti (t i |si ) =
J∏

j=1

K∏

k=1

fti jk (t i jk |si )

=
J∏

j=1

K∏

k=1

(
e−Hjk (si )

R∏

m=1

h jk(ti jkm, si )

)
(16)

where fti jk (t i |si ) is given byEq. (12). This is a temporal Poisson process regression
model with latent regressor variable si for process i , and the number n of processes
is a Poisson random variable.

6 More complex SCR models

The above development covers the basic DS, MRDS and SCR models for closed pop-
ulations (i.e. without birth, death, immigration or emigration). These methods can be
extended in a number of ways (see below), including incorporating additional covari-
ates in the spatialmodel, incorporating covariates and randomeffects in the observation
model, incorporating additional data on individuals’ locations, dealing with situations
in which not all individuals are identifiable, and incorporating population dynamics
and movement.

6.1 Extending the point process model

Although Borchers and Efford (2008) developed the analytic framework formodelling
locations using a NHPP, almost all published analyses use a homogeneous Poisson
process model (or if treating N as a parameter, a homogeneous binomial point process
model) for locations, largely because it was not obvious how to implement a NHPP
model with a sufficiently flexible intensity function D(s). Borchers andKidney (2014)
proposed using regression splines to model D(s) in a flexible way and this method is
implemented in Efford (2010). It allows spatial covariates to be included as explana-
tory variables in the intensity function (as well as covariates that are not spatially
referenced).

Reich and Gardner (2014) developed a point process model applicable with terri-
torial animals using a Strauss process (in which points tend to repel one another), but
with a constant intensity throughout the survey region.

6.2 Extending the observation model

Detection probability models have been extended in a number of ways, the simplest
of which is incorporating covariates into the detection function, or detection hazard
function. There are manyways of doing this. One that will be familiar to statisticians is
to extend the linear predictor of the complimentary log–log model to include observed
covariates (if the complimentary log–log model is used). In a similar vein, the cumu-
lative hazard of a Poisson observation model for count data or the detection hazard for
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detection time models (see Sect. 5.2) can be made to depend on covariates through a
log link function. If the detection function is not formulated using detection hazards,
the g0 parameter (see Sect. 5.1) or the range or scale parameter (σ with a half-normal
detection function form) can be made to depend on covariates (the former with a logit
link function, the latter with a log link function).

Unobserved latent variables or random effects other than s can be included in
similar ways. For example, Borchers and Efford (2008) incorporated the finite mixture
model of Pledger (2000) in SCR models. Probability density or mass functions for
the latent variables or random effects must obviously be introduced for all latent
variables. Frequentist inferencemethods requiremarginalising over the latent variables
or random effects, which can become difficult. Bayesian methods deal with additional
latent variables and random effects seamlessly.

In some cases latent variables are partially observed. The sex of individuals is an
example. Royle et al. (2015) and Efford (2010) developed methods for this case.

While not strictly an extension of the basic methods described above, being rather
an illustration of the utility of the detection hazard formulation, Efford et al. (2013)
demonstrate how detection function models parameterised in terms of detection haz-
ards can accommodate covariates quantifying detection effort. By doing so they are
able to explicitly and parsimoniously model detection probability on surveys in which
detectors operate for different lengths of time.

6.2.1 Modelling movement

In applications using detectors such as camera traps, in which individuals are detected
by virtue of movement that results in encounters with detectors, data from time series
of observed locations from telemetry data obtained from a sample of tagged animals
can be used to inform the detection probability model (see Sollmann et al. 2013a, b,
for example).

Royle et al. (2013b) proposed a model that incorporates both telemetry and camera
trap data. Aspects of the model relating to inferences about resource selection (rather
than incorporation of the telemetry data per se) were criticized by Efford (2014)
because the detection function model and resource selection models used were not
consistent with one another.

Royle et al. (2013b) and Sutherland et al. (2014) developed a detection function
model that allows detection probability to depend on a least-cost distance (“ecological
distance”) rather than the more usual Euclidian distance from individuals’ locations
to detectors. The cost is parameterised as a function of habitat (some habitats having
lower costs for movement of individuals than others) and allows the cost function to be
estimated simultaneously with other SCR model parameters. In addition to providing
a flexible way of modelling habitat-dependent movement, the model is useful for
drawing inferences about how individuals move through heterogeneous habitats, and
hence about landscape connectivity. An example of an application of the ecological
distance detection probability model can be found in Fuller et al. (2016).

Royle et al. (2016) developed and tested by simulation models that allow some
animals’ activity centres tomove in the course of the survey. They found that estimators
of abundance that assume stationary activity centres remained approximately unbiased
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in this case but that detection function parameters were biased, and cautioned against
over-interpretation of detection function parameters.

6.2.2 Alternative p(s) forms

Efford and Mowat (2014) and Efford et al. (2015) suggest two forms of re-
parameterised half-normal detection function models, motivated in the first case by
the fact that the range and the intercept of detection functions tend to be negatively
correlated when individuals are detected by virtue of their movement (if they move a
lot, the range increases and the intercept decreases, and vice-versa) and in the second
case by the fact that individuals’ territory sizes tend to be smaller when density is
higher.

Efford et al. (2009) and Stevenson et al. (2015) proposed detection function forms
specifically for acoustic surveys, which implicity model the loss in acoustic signal
strength with distance from source.

6.3 Supplementary location data

Received signal strength on an acoustic SCR survey is an example of supplementary
data (i.e. an observed response other than capture history) that is informative about
location: the weaker the received signal strength, the farther away the source is likely
to be. Efford et al. (2009), Borchers et al. (2015) and Stevenson et al. (2015) develop
SCR models that use received signal strength to improve inference.

There are other supplementary location data sources on acoustic surveys too. These
include exact times of arrival of acoustic signals at detectors (the signal arrives earlier
at those closer to the source) and estimates of angles to source and/or distance to
source when human listeners or sonobuoyes are the detectors. Borchers et al. (2015)
and Stevenson et al. (2015) showed that these can reduce bias and increase precision
substantially on acoustic SCR surveys.

A common problem with acoustic SCR data is uncertain recapture identification. A
similar problem arises with non-invasive genetic data when there is partial identity or
in camera trapping data when recapture is difficult to ascertain if only one side of an
individual is detected on the camera initially and the opposite side for the recapture.
While in the case of acoustic surveys, it may not be difficult to identify received signals
at different detectors as the same vocalization, it is often difficult to identify different
vocalizations from the same individual as such. Supplementary location data should
help resolve this problem (as themore we know about the location of the sound source,
the less uncertainty there is about recapture identity) but as yet no method has been
developed to do this.

6.4 Unmarked individuals

Chandler and Royle (2013) developed a method without capture histories but the
quality of inferences from this method is poor. They also considered situations in
which only a fraction of the population is marked, which leads to much more reliable
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inference. This method is likely to be very useful for many camera trap datasets in
which a fraction of a population of individuals that are otherwise not individually
identifiable, can be marked. Sollmann et al. (2013a) and Sollmann et al. (2013b)
extended this method to accommodate a tagged sample with telemetry data.

6.5 Open population models

Two kinds of open populationmodel with SCR have been developed. The first involves
estimation of population trajectory by modelling temporal trend in D(s) using some
smooth function, without explicitly modelling demographic parameters driving the
trend. This approach with monotonic temporal trend was developed by Borchers and
Efford (2008) and extended to model trend using regression splines by Borchers and
Kidney (2014).

Open population models in which birth, death and movement are modelled at the
individual level have been developed by Gardner et al. (2010), Royle et al. (2013a),
Ergon and Gardner (2014) and Sollmann et al. (2015). Schaub and Royle (2013)
develop a similar model to that of Ergon and Gardner (2014) but estimate only move-
ment and survival of amarked subset of the population. Aside fromErgon andGardner
(2014) and Schaub and Royle (2013), these models assume either that individuals’
activity centres do not change over time, or that they are independently located across
time. Ergon andGardner (2014) and Schaub and Royle (2013)model individual move-
ment over time as a dispersal process.

7 Discussion

We have tried to present an overview of SCR methods for statisticians who are unfa-
miliar with methods in statistical ecology, starting from distance sampling methods
(a spatial sampling method in which individuals are observed) and showing how the
addition of capture–recapture data and then the loss of observed locations leads to
SCR methods. In doing this we have focussed on SCR models and how they relate to
some models in mainstream (non-ecological) statistics, and this has been at the cost
of not describing of how SCR is applied in practice.

For example, we have not covered survey design issues, which is an important
area in which relatively little research has been done. And the only detectors we have
mentioned are detectors like camera traps, snap traps, microphones and other detectors
that are effectively points in space, but SCRmethods also accommodate detectors that
span areas or transects (see Royle and Young 2008; Royle et al. 2011; Efford 2011).
We have also not had space to illustrate the many and various applications of SCR to
wildlife populations

We have only touched in passing on inference methods.While the first SCRmethod
was frequentist (the inverse prediction method of Efford 2004), the first methods with
explicit likelihood functions were developed simultaneously for Bayesian (Royle and
Young 2008) and frequentist (Borchers and Efford 2008) inference methods. The
two approaches have developed in parallel since then and it is largely a matter of the
preference of the analyst that leads to one or the other approach being used. Frequentist
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Fig. 1 Point transect (left) and line transect (right) survey schematics.With point transects, a circle of radius
W is searched, while with line transects a rectangle of width W and length L is searched by transiting the
line up its centre. The coordinate system is centred on the observer, at the solid circle. The figures show
coordinates for an individual detected at Cartesian coordinates (x, y)

inference tends to be faster, because the data augmentationMarkov chainMonte Carlo
methods implemented for Bayesian inference can be much more computationally
demanding. This may change with the advent of a more efficient Bayesian method by
King et al. (2016). Bayesianmethods aremore easily able to deal with open population
models in which there is temporal dependence in the state of the population, with
situations in which only a fraction of the population is marked, and in which there
is spatial correlation in individuals’ locations. Indeed the only current methods for
dealing with these cases are Bayesian.

SCR methods are relatively new and growing fast (see Royle et al. 2013a). We
are only beginning to appreciate and explore the possibilities that the extension of
capture–recapture into spatial dimensions provides, and this is a field of research
ripe for innovative method development by applied statisticians. Areas of likely future
development includemore sophisticated spatial and spatio-temporalmodelling of indi-
viduals’ locations for closed and open populations, newmethods for integrating spatial
capture–recapture and other kinds of ecological survey data, and methods of dealing
with recapture uncertainty.
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Appendix: Distance sampling models

As noted in Sect. 3.3, DS methods are usually model-based only within distanceW of
samplers, relying on design-based methods to draw inferences beyond W . And most
DS methods assume uniform distribution of individuals with distanceW . In this case,
the pdf of individuals’ locations within the searched region is D(s;φ) = 1/(πW 2)

for point transect surveys (when a circle of radius W is searched—see Fig. 1) and
D(s;φ) = 1/(2WL) for line line transect surveys (when a rectangle with sides L and
2W is searched—see Fig. 1).
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If we write s in terms of Cartesian coordinates (x, y) and transform from Cartesian
to polar coordinates for the point transect case: r = √

x2 + y2, θ = tan−1(y/x) and
x = r sin(θ), y = r cos(θ), with Jacobian =−1, and then marginalise over θ , we get
D(r) = 2r/W 2.

In the case of point transect surveys, detection probability is modelled as a function
of radial distance only, so that p(d(si ); θ) = p(ri ; θ). In the case of line transect
surveys, detection probability is modelled as a function of perpendicular distance only,
so that p(d(si ); θ) = p(xi ; θ). Inference is usually based only on ri for point transects
and xi for line transects (i = 1, . . . , n), so that we use f (ri |, δi = 1) and f (xi |, δi =
1) in place of f (si |, δi = 1). These are obtained using D(s;φ) = 1/(πW 2) and
integrating out θ for point transects and using D(s;φ) = 1/(2WL) and integrating
out y for line transects, as follows:

f (ri |δi = 1) =
∫ 2π

0

p(d(si ); θ)D(si ;φ)

E(n; θ , φ)
dθ

= p(ri ; θ) 2r
W 2

∫ W
0 p(r; θ) 2r

W 2 dr
= p(ri ; θ)r

∫ W
0 p(r; θ)r dr

and (17)

f (xi |δi = 1) =
∫ L

0

p(d(si ); θ)D(si ;φ)

E(n; θ , φ)
dy

= p(xi ; θ) 1
2W∫ W

0 p(x; θ) 1
2W dx

= p(xi ; θ)
∫ W
0 p(x; θ) dx

(18)

These are the forms found in the conventional distance sampling literature.

References

Alho, J.M.: Logistic regression in capture–recapture models. Biometrics 46, 623–635 (1990)
Borchers, D.L., Efford,M.G.: Spatially explicitmaximum likelihoodmethods for capture–recapture studies.

Biometrics 64, 377–385 (2008)
Borchers, D.L., Kidney, D.: Flexible density surface estimation for spatially explicit capture–recapture

surveys. Technical report, University of St Andrews (2014)
Borchers, D.L., Zucchini, W., Fewster, R.: Mark-recapture models for line transect surveys. Biometrics 54,

1207–1220 (1998)
Borchers, D.L., Distiller, G., Foster, R., Harmsen, B., Milazzo, L.: Continuous-time spatially explicit

capture–recapture models, with an application to a jaguar camera-trap survey. Methods Ecol. Evol. 5,
656–665 (2014)

Borchers, D.L., Stevenson, B.C., Kidney, D., Thomas, L., Marques, T.A.: A unifying model for capture–
recapture and distance sampling. J. Am. Stat. Assoc. 201, 195–204 (2015)

Buckland, S., Oedekoven, C., Borchers, D.: Model-based distance sampling. J. Agric. Biol. Environ. Stat.
21, 58–75 (2016)

Buckland, S.T.: Fitting density functions with polynomials. Appl. Stat. 41, 63–76 (1992)
Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, L.: Introduction

to Distance Sampling: Estimating Abundance of Biological Populations. Oxford University Press,
Oxford (2001)

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, L.: Advanced Dis-
tance Sampling. Oxford University Press, Oxford (2004)

Chandler, R.B., Royle, J.A.: Spatially explicit models for inference about density in unmarked or partially
marked populations. Ann. Appl. Stat. 7, 936–954 (2013)

123



Special issue: ecological statistics. From distance sampling… 493

Currey, R.J.C., Rowe, L.E., Dawson, S.M.: Abundance and demography of bottlenose dolphins in Dusky
Sound, New Zealand, inferred from dorsal fin photographs. N. Z. J. Mar. Freshw. Res. 42, 439–449
(2008)

Efford, M.: secr: Spatially Explicit Capture–Recapture in R. R package version, vol. 1, no. (4) (2010)
Efford, M.: Estimation of population density by spatially explicit capture–recapture analysis of data from

area searches. Ecology 92, 2202–2207 (2011)
Efford, M., Borchers, D., Mowat, G.: Varying effort in capture–recapture studies. Methods Ecol. Evol. 4,

629–636 (2013)
Efford, M., Dawson, D.K., Jhala, Y., Qureshi, Q.: Density-dependent home-range size revealed by spatially

explicit capture–recapture. Ecography 38, 1–13 (2015)
Efford, M.G.: Density estimation in live-trapping studies. Oikos 106, 598–610 (2004)
Efford, M.G.: Bias from heterogeneous usage of space in spatially explicit capture–recapture analyses.

Methods Ecol. Evol. 5, 599–602 (2014)
Efford, M.G., Fewster, R.M.: Estimating population size by spatially explicit capture–recapture. Oikos 122,

918–928 (2013)
Efford,M.G., Mowat, G.: Compensatory heterogeneity in spatially explicit capture–recapture data. Ecology

95, 1341–1348 (2014)
Efford, M.G., Borchers, D.L., Byrom, A.E.: Modeling Demographic Processes in Marked Populations,

chapter Density estimation by spatially explicit capture-recapture: likelihood-based methods. Envi-
ronmental and Ecological Statistics. Springer, New York (2008)

Efford, M.G., Dawson, D.K., Borchers, D.L.: Population density estimated from locations of individuals
on a passive detector array. Ecology 90, 2676–2682 (2009)

Ergon, T., Gardner, B.: Separating mortality and emigration: modelling space use, dispersal and survival
with robust-design spatial capture-recapture data. Methods Ecol. Evol. 5, 1327–1336 (2014)

Fuller, A.K., Sutherland, C.S., Royle, A.J., Hare, M.P.: Estimating population density and connectivity of
American mink using spatial capture–recapture. Ecol. Appl. 26, 1125–1135 (2016)

Gardner, B., Reppucci, J., Lucherini, M., Royle, J.A.: Spatially explicit inference for open populations:
estimating demographic parameters from camera-trap studies. Ecology 91, 3376–3383 (2010)

Hayes, R.J., Buckland, S.T.: Radial-distance models for the line-transect method. Biometrics 39, 29–42
(1983)

Huggins, R.M.: On the statistical analysis of capture experiments. Biometrika 76, 133–140 (1989)
Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns.

Wiley, New York (2009)
Johnson, D.S., Laake, J.L., Ver Hoef, J.M.: A model-based approach for making ecological inference from

distance sampling data. Biometrics 66, 310–318 (2010)
Kellner, K.F., Swihart, R.K.: Accounting for imperfect detection in ecology: a quantitative review. PLoS

One 9, e111436 (2014)
King, R., McClintock, B., Kidney, D., Borchers, D.: Capture-recapture abundance estimation using a semi-

complete data likelihood approach. Ann. Appl. Stat. 10, 264–285 (2016)
Otis, D.L., Burnham, K.P., White, G.C., Anderson, D.R.: Statistical inference from capture data on closed

animal populations. Wildl. Monogr. 62, 1–135 (1978)
Pledger, S.: Unified maximum likelihood estimates for closed capture-recapture models using mixtures.

Biometrics 56, 434–442 (2000)
Puechmaille, S.J., Petit, E.J.: Empirical evaluation of non-invasive capture-mark–recapture estimation of

population size based on a single sampling session. J. Appl. Ecol. 44, 843–852 (2007)
Reich,B.,Gardner, B.:A spatial capture–recapturemodel for territorial species. Environmetrics 25, 630–637

(2014)
Rich, L.N., Kelly, M.J., Sollmann, R., Noss, A.J., Maffei, L., Arispe, R.L., Paviolo, A., De Angelo, C.D., Di

Blanco, Y.E., Di Bitetti, M.S.: Comparing capture–recapture, mark-resight, and spatial mark-resight
models for estimating puma densities via camera traps. J. Mammal. 95, 382–391 (2014)

Royle, J.A., Young, K.V.: A hierarchical model for spatial capture–recapture data. Ecology 89, 2281–2289
(2008)

Royle, J.A., Karanth, K.U., Gopalaswamy, A.M., Kumar, N.S.: Bayesian inference in camera trapping
studies for a class of spatial capture–recapture models. Ecology 90, 3233–3244 (2009)

Royle, J.A., Kéry,M., Guilat, J.: Spatial capture–recapturemodels for search-encounter data.Methods Ecol.
Evol. 2, 602–611 (2011)

123



494 D. L. Borchers, T. A. Marques

Royle, J.A., Chandler, R.B., Sollmann, R., Gardner, B.: Spatial Capture–Recapture. Academic Press, Oxford
(2013a)

Royle, J.A., Chandler, R.B., Gazenski, K.D., Graves, T.A.: Spatial capture–recapture models for jointly
estimating population density and landscape connectivity. Ecology 94, 287–294 (2013b)

Royle, J.A., Sutherland, C., Fuller, A.K., Sun, C.C.: Likelihood analysis of spatial capture–recapturemodels
for stratified or class structured populations. Ecosphere 6, 1–11 (2015)

Royle, J.A., Fuller, A.K., Sutherland, C.: Spatial capture–recapture models allowing Markovian transience
or dispersal. Popul. Ecol. 58, 53–62 (2016)

Schaub, M., Royle, J.A.: Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber
models. Methods Ecol. Evol. 5, 1316–1326 (2013)

Sollmann, R., Gardner, B., Parsons, A.W., Stocking, J.J., McClintock, B.T., Simons, T.R., Pollock, K.H.,
O’Connell, A.F.: A spatial mark-resight model augmented with telemetry data. Ecology 94, 553–559
(2013a)

Sollmann, R., Gardner, B., Chandler, R.B., Shindle, D.B., Onorato, D.P., Royle, J.A., O’Connell, A.F.:
Using multiple data sources provides density estimates for endangered Florida panther. J. Appl. Ecol.
50, 961–968 (2013b)

Sollmann,R.,Gardner,B.,Chandler,R.B.,Royle, J.A., Sillett, T.S.:Anopenpopulation hierarchical distance
sampling model. Ecology 96, 325–331 (2015)

Stevenson, B.C., Borchers, D.L., Altwegg, R., Swift, R.J., Gillespie, D.M., Measey, G.J.: A general frame-
work for animal density estimation from acoustic detections across a fixed microphone array. Methods
Ecol. Evol. 6, 38–48 (2015)

Sutherland, C., Fuller, A.K., Royle, J.A.: Modelling non-Euclidean movement and landscape connectivity
in highly structured ecological networks. Methods Ecol, Evol (2014)

Williams, B.K., Nichols, J.D., Conroy, M.J.: Analysis and Management of Animal Populations. Academic
Press, San Diego, California (2002)

123


	From distance sampling to spatial capture–recapture
	Abstract
	1 Introduction
	2 Modelling framework
	2.1 The meaning of ``location''
	2.2 The model hierarchy
	2.3 The point process model
	2.4 The observation model

	3 Conventional distance sampling models
	3.1 Distance sampling as a latent variable regression model
	3.2 Distance sampling as a thinned point process
	3.3 Distance sampling hybrid model

	4 Mark-recapture distance sampling
	5 Spatial capture–recapture methods
	5.1 SCR detection hazards and detection functions
	5.2 SCR detection and capture models

	6 More complex SCR models
	6.1 Extending the point process model
	6.2 Extending the observation model
	6.2.1 Modelling movement
	6.2.2 Alternative p(s) forms

	6.3 Supplementary location data
	6.4 Unmarked individuals
	6.5 Open population models

	7 Discussion
	Acknowledgements
	Appendix: Distance sampling models
	References




